$\frac{\text { WJEC }}{\text { CBAC }}$

GCSE MARKING SCHEME

SCIENCE - PHYSICS

JANUARY 2011

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2011 examination in GCSE SCIENCE - PHYISCS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

PHYSICS 1

Foundation Tier			Answer / Explanatory Notes	Marks Available
1.			Each correct line (1) Each additional line - 1 [minimum 0]	$\begin{gathered} 4 \\ 4 \end{gathered}$
2.	(a) (b)	$\begin{array}{r} \text { (i) } \\ \text { (ii) } \\ \text { (iii) } \end{array}$	Hydrogen equal [to] (1) bigger [than] (1) Smaller [than] (1)	1 3 4
3.	(a) (b)		\ldots. radiated (1) \ldots absorbed (1) ... Fibre glass contains trapped air (or equiv) [which is a good insulator]. [accept: contains air]	2 1 3
4.	(a) (b)		[Energy wasted $=] 2300[\mathrm{~kJ}]$ $\%$ Efficiency $=\frac{1200}{3500} \times 100(1-$ subs $)$ [or by impl. $]=34.3 \%(1-$ ans $)$ [accept 34.29, 34.3, 34 not 34.28] N.B. 34.2 on its own gets $1^{\text {st }}$ mark (by impl.)	1 2 3
5.	(a) (b)	$\begin{array}{r} \text { (i) } \\ \text { (ii) } \\ \text { (iii) } \end{array}$	A $\begin{aligned} & \underline{132000}(1) \\ & \underline{E}(1) \\ & \underline{\text { small (1) }} \end{aligned}$	1 3 4

Foundation tier			Answer / Explanatory Notes	Marks Available
6.	(a) (b) (c)	(i) (ii) (i) (ii)	Radio [waves] (1)Ultra violet [waves] [accept UV] (1) Infra red [accept radio or microwave](1) Microwave (1) Ultraviolet [or UV] / X [-rays] / Gamma [rays] (1) Burns [however expressed e.g. heating.] (1) ["cancer" $=$ neutral this time. Not just damages skin/cells]	2 2 2 6
7.	(a) (b) (c)	(i) (ii) (iii) (i) (ii)	kilowatt / 1000 watts (1) 4000 (1) Electric oven (1) (no e.c.f.) $\begin{array}{ll} \text { time }=\frac{12}{4} / 3 \text { (subst or ans) } & \text { N.B. } \frac{12}{4}=6 \text { not s.i.f. } \\ 18[\mathrm{kWh}](\text { ans }) & \\ 216 / 2.16 / 18 \times 12(\text { e.c.f) (1) } & \begin{array}{l} 216 \text { p or } £ 2.16 \text { (1) } \\ \text { [i.e. appropriate unit] } \end{array} \end{array}$	3 1 1 7
8.	(a) (b) (c) (d)		[Distance from Sun =] 100 [million km] Earth / earth 0.9 Mercury	1 1 1 1 4
9.	(a) (b) (c)	(i) (ii) (i) (ii)	$2.5 / 2^{1 / 2}$ AB (1) $B C$ (1) Average wavelength $=\frac{240}{8} / 30[\mathrm{~cm}]$ (subst or ans) [N.B. $\frac{8}{240}=30 \rightarrow 0$] [wavespeed $=10 \times 30$ [e.c.f.]] $300[\mathrm{~cm} / \mathrm{s}]$ (answer) [Accept $3 \mathrm{~m} / \mathrm{s}$ - only if m / s written in]	1 2 1 1 5

Foundation tier			Answer / Explanatory Notes	Marks Available
10.	(a) (b) (c)		Scotland Any $2 \times(1)$ from - Larger wind turbines can be built \checkmark - It is windier at sea than on land [strength or consistency] \checkmark - Larger wind turbines are more efficient \checkmark - Larger area available / can build more Mean power $=\frac{810}{18}(1)[$ or by impl. $]=45[\mathrm{MW}](1)$	1 2 2 5
11.	(a) (b) (c)	(i) (ii) (i) (ii)	Refraction [or refract / refracted] Accept: change in medium[however expressed] / density / [wave]speed [Accept: it strikes the glass at an angle.] Total internal reflection [accept TIR] The angle [of incidence] is less/smaller than the critical angle [for glass and air]. [Accept the angle is less/smaller than a specified angle which should be between 42° and 45°] Emergent ray drawn in the correct quadrant [arrow not required] showing refraction away from the normal. [N.B. Not accept a ray drawn along boundary.]	1 1 1 1 1 5

Higher Tier			Answer / Explanatory Notes	Marks Available
1.	(a) (b) (c)	(i) (ii) (i) (ii)	$2.5 / 2^{1 / 2}$ AB (1) BC (1) Average wavelength $=\frac{240}{8} / 30[\mathrm{~cm}]$ (subst or ans) [N.B. $\frac{8}{240}=30 \rightarrow 0$] [wavespeed $=10 \times 30$ [e.c.f.]] $300[\mathrm{~cm} / \mathrm{s}]$ (answer) [Accept $3 \mathrm{~m} / \mathrm{s}$ - only if m / s written in]	2 1 1 5
2.	(a) (b) (c) (d)		Scotland Any $2 \times(1)$ from - Larger wind turbines can be built \checkmark - It is windier at sea than on land [strength or consistency] - Larger wind turbines are more efficient \checkmark - Larger area available / can build more Mean power $=\frac{810}{18}(1)[$ or by impl. $]=45[\mathrm{MW}](1)$ Any $2 \times(1)$ - Destruction of habitat / environment - Unsightly / would affect property values / deter tourism \checkmark - Danger to shipping /mariners \checkmark	1 2 2 2 7

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Higher Tier} \& Answer / Explanatory Notes \& Marks Available

\hline 5. \& (a)
(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(i)

(ii)

(iii)

(i)

(ii)

 \&

Much bigger R value [than free air] [Accept: big R value]

0.32

$$
\frac{300 \times 25(1)}{6}=1250[\mathrm{~W}](1-\text { ans })
$$

- $\div 1000$ (1)

- $\times 24$ (1)

- $\times 12$ (1)

- Units (1)

Smaller outside wall area [or equiv.]

thickness $=\frac{7.2}{2.4} \times 10 \mathrm{~cm} / 30 \mathrm{~cm}(1-$ calc or ans $)$

(fibre glass) reduces conduction through the ceiling/ into the attic (1). This reduces convection in the attic space (1)

 \&

1

2

4

1

1

2

12
\end{tabular}

\hline 6. \& | (a) |
| :--- |
| (b) | \& | (i) |
| :--- |
| (ii) | \& | $[\%] \text { Efficiency }=\frac{\text { Useful power transfer }}{\text { total power input }} \times 100$ |
| :--- |
| [accept: in terms of energy] $\begin{aligned} & 34.3=\frac{1200}{\text { total power input }} \times 100(1-\text { subst }) \\ & \begin{aligned} \text { total power input } & =\frac{1200 \times 100}{34.3}(1 \text { manip or in words }) \\ & =3498.5 \text { or } 3500(\text { Ans } 1) \end{aligned} \end{aligned}$ |
| - Division by 10 [at any stage] (1) |
| - Conversion to consistent units [e.g. MW $\rightarrow \mathrm{W}$] (1) |
| - Calculation using correct figures (1) [Expected answer $=272.7 \mathrm{~A}$] | \& | 1 |
| :--- |
| 3 |
| 3 |
| 7 |

\hline
\end{tabular}

PHYSICS 2

Foundation Tier			Answer / Explanatory Notes	Marks Available
1.	(a) (b)	(i) (ii) (iii)	A blue Insulation / to prevent short circuits / prevent shocks [Not protect wires or just safety, or prevent fire] $[B-] D-A-C-E$ [All correct $\rightarrow 3 ; 2$ correct $\rightarrow 2 ; 1$ correct $\rightarrow 1 ; 4$ of same letter $\rightarrow 0$]	3 3 6
2.	(a) (b)	(i) (ii) (iii)	Alter variable resistor / change resistance (1) Change the voltage / power supply (1) Not: add another resistor or battery 6[.0] [V] 1[.0] A read from graph [or by impl.] (1) answer of $2[.0][\Omega]$ (1) No e.c.f $1 / 2=2 \rightarrow 1^{\text {st }}$ mark only Power $=6 \times 2(1-$ subst $)[$ or by impl. $]=12[\mathrm{~W}](1-$ ans $)$	2 1 2 2 7
3.	(a) (b)	(i) (ii) (i) (ii)	40000 J indicated (1) 80000 J indicated (1) [Work done against] friction / air resistance / drag [Accept: Energy converted to heat] Force $=\frac{80000}{40}(1-$ subs e.c.f from (a) (ii)) $[$ or by impl. $]=2000[\mathrm{~N}](1-$ ans) $\mathrm{NB}: \frac{40}{80000}=2000 \rightarrow 0$	2 1 2 5
4	(a) (b) (c)	(i) (ii) (iii) (iv)	air resistance (1) gravity (1) increases (1) stays the same (1) Constant speed [or equiv.] / steady pace Resultant force $=70 \times 5(1-$ subs $)[$ or by impl. $]=350[\mathrm{~N}](1 \mathrm{ans})$	4 1 2 7

Foundation tier			Answer / Explanatory Notes	Marks Available
5.	(a) (b)	$\begin{array}{r} \text { (i) } \\ \text { (ii) } \\ \text { (iii) } \end{array}$	$\begin{aligned} & 6 \text { [hours] } \\ & 6 \text { [hours] } \\ & 12 \text { [hours] } \end{aligned}$ Alpha is absorbed easily / would not be detected outside the body.(1) It is highly ionising / causes damage to [DNA] in cells / tissues/organs [Not body].(1)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ 2 7
6.	(a) (b)	(i) (ii) (iii) (i) (ii)	362 [millirem] in the table Radon 53 [millirem] Reference to less cosmic [rays] / atmosphere absorbs cosmic rays [or by implication, e.g. at sea level cosmic rays have to go through more air] [under-floor] ventilation [however described] / seal floors	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \\ & 1 \\ & 1 \\ & 5 \end{aligned}$
7.		(i) (ii) (iii)	0.6 s distance $=25 \times 0.6$ e.c.f $(1-$ subst $)[$ or by impl. $]=15[\mathrm{~m}](1-$ ans $)$ Use of 4.2 s [e.c.f from (i)](1) Answer (1) [Accept: $\frac{25}{4.2}=5.95,6.0,6$]	1 2 2 5
8.	(a) (b)	(i) (ii) (i) (ii)	Reading only affected by lead [or equiv.] Any 2 from: - Reading is affected by paper, so it emits alpha (\checkmark) - Reading not [further] affected by aluminium, so there is no beta (\checkmark) Some radiation penetrates 4 mm of aluminium so there is gamma (\checkmark) gamma / it can penetrate the crate / box / packaging /food [accept converse reasoning, i.e. that alpha and / or beta cannot penetrate ...] To absorb gamma radiation (1) to protect workers (1) [Accept radiation poisoning]	1 2 1 2 6

| Foundation tier | | Answer / Explanatory Notes | Marks
 Available |
| :--- | :---: | :---: | :--- | :---: |
| 9. | (i)(ii)To complete the circuit [of the live wire and electrical device] / returns
 circuit $/$ lets current return.
 Any $2 \times(1)$ from
 mcb's are quicker acting \checkmark
 (mcb's are more sensitive \checkmark
 mcb's can be reset \checkmark
 [Accept converse]
 Too much current [accept a specified fault which would result in too
 much current] | 1 | |

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Higher tier} \& Answer / Explanatory Notes \& Marks Available

\hline 3. \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

 \&

To complete the circuit [of the live wire and electrical device] / returns circuit / lets current return.

Any $2 \times(1)$ from

- mcb's are quicker acting \checkmark

- mcb's are more sensitive \checkmark

- mcb's can be reset \checkmark

[Accept converse]

Too much current [accept a specified fault which would result in too much current]

Fault causing leakage to earth (1) ...

... producing a $[\mathrm{big}]$ increase in current (1)...

...the fuse [melts and] breaks the circuit. (1)

 \&

2

1

3
7
\end{tabular}

\hline 4. \& | (a) |
| :--- |
| (b) |
| (c) | \& (i)

(ii) \& \begin{tabular}{l}
Imbalance in numbers of particles (1); protons and neutrons specified (1) accept: different number (1) of protons and neutrons (1) "Electrons" = s.i.f $\rightarrow 0$

Any 2 from

Alpha particles easily absorbed [by cancer cells / other tissues] highly ionising \checkmark

.... so would not penetrate to tumour if not placed within [or must be directly in tumour, not in a case which would absorb the alpha particles] \checkmark

surrounding healthy cells / tissue would not be harmed if the At-

211 were inside the tumour \checkmark

It takes 7.2 hours [or this is the time taken] for the activity / count rate /

number of astatine[-211] nuclei to halve

Italicised words [or equiv.] (1)

Non-italicised words [or equiv.] (1)

36 hours $=5$ half-lives [or by impl.](1)

Fraction remaining $=\frac{1}{32}(1)$

 \&

2

2

2

2

8
\end{tabular}

\hline
\end{tabular}

Higher tier			Answer / Explanatory Notes	Marks Available
5.	(a) (b) (c)	(i) (i) (ii) (i) (ii)	[Varying resistance] alters the [total] resistance of the circuit (1) leading to a varying current / a varying voltage [across the diode] (1) Answer in range $0.59-0.63 \mathrm{~V}$ Current reading at 0.7 V in range $0.11-0.12 \mathrm{~A}$ (1) $\left[\text { Resistance }=\frac{0.7}{0.11 \rightarrow 0.12}=\right] 5.8-6.4[\Omega](1)$ Current reduced [to very small value / nearly 0 / $0.001-0.002 \mathrm{~A}$] Resistance increased (1) to a very high value / a figure of several hundred ohms (1) [or allow matching pair of results, eg, $\frac{0.63}{0.01}$ or $\frac{0.6}{0}$ but $\frac{0.6}{0}=0$ sif]	2 1 2 1 2 8
6.	(a) (b)	(i) (ii)	Equation: Kinetic energy $=\frac{\text { mass } \times \text { speed }^{2}}{2}$ or $\frac{1}{2} m v^{2}$ Substitution: $75000=\frac{1}{2} \times 60 \times v^{2}(1)$ Speed $=50 \mathrm{~m} / \mathrm{s}(1)$ Friction[al force] / air resistance / drag (1) means some PE converted to heat / sound (1) [rather than KE] [OR Friction[al force] / air resistance / drag opposes motion (1), [so the resultant force is less] so the acceleration is less (1).] Initial KE $\left[=1 / 2 \times 60 \times 30^{2}\right]=27000 \mathrm{~J}(1)$ [or by impl.] Manip / subst: Force $=\frac{27000}{20}($ e.c.f $)(1)[$ or by impl. $]=1350 \mathrm{~N}(1-$ ans $)$ N.B. Use of $75000 \mathrm{~J}: 2^{\text {nd }}$ (manipulates) mark available.	2 2 3 7

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

